NAG Toolbox for MATLAB

f08tp

1 Purpose

f08tp computes selected eigenvalues and, optionally, eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form

$$Az = \lambda Bz$$
, $ABz = \lambda z$ or $BAz = \lambda z$,

where A and B are Hermitian, stored in packed format, and B is also positive-definite. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

2 Syntax

[ap, bp, m, w, z, jfail, info] =
$$f08tp(itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol)$$

3 Description

f08tp first performs a Cholesky factorization of the matrix B as $B = U^{H}U$, when **uplo** = 'U' or $B = LL^{H}$, when **uplo** = 'L'. The generalized problem is then reduced to a standard symmetric eigenvalue problem

$$Cx = \lambda x$$
,

which is solved for the desired eigenvalues and eigenvectors. The eigenvectors of C are then backtransformed to give the eigenvectors of the original problem.

For the problem $Az = \lambda Bz$ and $ABz = \lambda z$, the eigenvectors are normalized so that

$$z^{\mathrm{H}}Bz=I$$
.

For the problem $BAz = \lambda z$ we correspondingly have

$$z^{\mathrm{H}}B^{-1}z = I$$
.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D 1999 *LAPACK Users' Guide* (3rd Edition) SIAM, Philadelphia URL: http://www.netlib.org/lapack/lug

Demmel J W and Kahan W 1990 Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist. Comput. 11 873–912

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: itype – int32 scalar

Specifies the problem type to be solved.

[NP3663/21] f08tp.1

f08tp NAG Toolbox Manual

itype = 1

$$Az = \lambda Bz$$
.
itype = 2
 $ABz = \lambda z$.
itype = 3

 $BAz = \lambda z$.

2: **jobz – string**

If jobz = 'N', compute eigenvalues only.

If $\mathbf{jobz} = 'V'$, compute eigenvalues and eigenvectors.

Constraint: jobz = 'N' or 'V'.

3: range – string

If **range** = 'A', all eigenvalues will be found.

If range = 'V', all eigenvalues in the half-open interval (vl, vu) will be found.

If range = 'I', the ilth to iuth eigenvalues will be found.

Constraint: range = 'A', 'V' or 'I'.

4: uplo – string

If uplo = 'U', the upper triangles of A and B are stored.

If $\mathbf{uplo} = 'L'$, the lower triangles of A and B are stored.

Constraint: uplo = 'U' or 'L'.

5: n - int32 scalar

n, the order of the matrices A and B.

Constraint: $\mathbf{n} \geq 0$.

6: ap(*) – complex array

Note: the dimension of the array **ap** must be at least $\max(1, \mathbf{n} \times (\mathbf{n} + 1)/2)$.

The n by n Hermitian matrix A, packed by columns.

More precisely,

if **uplo** = 'U', the upper triangle of A must be stored with element A_{ij} in $\mathbf{ap}(i+j(j-1)/2)$ for $i \le j$;

if **uplo** = 'L', the lower triangle of A must be stored with element A_{ij} in $\mathbf{ap}(i+(2n-j)(j-1)/2)$ for $i \ge j$.

7: bp(*) - complex array

Note: the dimension of the array **bp** must be at least $max(1, \mathbf{n} \times (\mathbf{n} + 1)/2)$.

The upper or lower triangle of the Hermitian matrix B, packed by columns.

More precisely,

if **uplo** = 'U', the upper triangle of B must be stored with element B_{ij} in **bp**(i+j(j-1)/2) for $i \le j$;

if **uplo** = 'L', the lower triangle of *B* must be stored with element B_{ij} in $\mathbf{bp}(i+(2n-j)(j-1)/2)$ for $i \ge j$.

f08tp.2 [NP3663/21]

8: vl – double scalar

9: **vu – double scalar**

If range = 'V', the lower and upper bounds of the interval to be searched for eigenvalues.

If range = 'A' or 'I', vl and vu are not referenced.

Constraint: if range = 'V', vl < vu.

10: il – int32 scalar

11: iu – int32 scalar

If range = 'I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned.

If range = 'A' or 'V', il and iu are not referenced.

Constraints:

if
$$\mathbf{n} = 0$$
, $\mathbf{il} = 1$ and $\mathbf{iu} = 0$;
if $\mathbf{n} > 0$, $1 \le \mathbf{il} \le \mathbf{iu} \le \mathbf{n}$.

12: abstol – double scalar

The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a, b] of width less than or equal to

abstol +
$$\epsilon \max(|a|, |b|)$$
,

where ϵ is the *machine precision*. If **abstol** is less than or equal to zero, then $\epsilon \|T\|_1$ will be used in its place, where T is the tridiagonal matrix obtained by reducing C to tridiagonal form. Eigenvalues will be computed most accurately when **abstol** is set to twice the underflow threshold $2 \times x02$ am(), not zero. If this function returns with **info** > 0, indicating that some eigenvectors did not converge, try setting **abstol** to $2 \times x02$ am(). See Demmel and Kahan 1990.

5.2 Optional Input Parameters

None.

5.3 Input Parameters Omitted from the MATLAB Interface

ldz, work, rwork, iwork

5.4 Output Parameters

1: ap(*) - complex array

Note: the dimension of the array **ap** must be at least $\max(1, \mathbf{n} \times (\mathbf{n} + 1)/2)$.

The contents of ap are destroyed.

2: bp(*) – complex array

Note: the dimension of the array **bp** must be at least $\max(1, \mathbf{n} \times (\mathbf{n} + 1)/2)$.

The triangular factor U or L from the Cholesky factorization $B = U^{H}U$ or $B = LL^{H}$, in the same storage format as B.

3: m - int32 scalar

The total number of eigenvalues found.

If range =
$$'A'$$
, $m = n$.

If range = 'V', the exact value of **m** is not known in advance, but will satisfy $0 \le \mathbf{m} \le \mathbf{n}$.

If range = 'I',
$$\mathbf{m} = \mathbf{i}\mathbf{u} - \mathbf{i}\mathbf{l} + 1$$
.

[NP3663/21] f08tp.3

f08tp NAG Toolbox Manual

4: $\mathbf{w}(*)$ – double array

Note: the dimension of the array w must be at least max(1, n).

The first **m** elements contain the selected eigenvalues in ascending order.

5: z(ldz,*) – complex array

The first dimension, ldz, of the array z must satisfy

if
$$\mathbf{jobz} = \mathbf{'V'}$$
, $\mathbf{ldz} \ge \max(1, \mathbf{n})$; $\mathbf{ldz} > 1$ otherwise.

The second dimension of the array must be at least $max(1, \mathbf{m})$

If $\mathbf{jobz} = 'V'$, then if $\mathbf{info} = 0$, the first m columns of Z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the ith column of Z holding the eigenvector associated with $\mathbf{w}(i)$. The eigenvectors are normalized as follows:

if **itype** = 1 or 2,
$$Z^{H}BZ = I$$
; if **itype** = 3, $Z^{H}B^{-1}Z = I$.

If jobz = 'N', z is not referenced.

If an eigenvector fails to converge, then that column of z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in **jfail**.

Note: you must ensure that at least $max(1, \mathbf{m})$ columns are supplied in the array \mathbf{z} ; if $\mathbf{range} = 'V'$, the exact value of \mathbf{m} is not known in advance and an upper bound must be used.

6: $\mathbf{jfail}(*) - \mathbf{int32} \text{ array}$

Note: the dimension of the array **jfail** must be at least $max(1, \mathbf{n})$.

If jobz = 'V', then if info = 0, the first m elements of jfail are zero.

If info > 0, if all contains the indices of the eigenvectors that failed to converge.

If jobz = 'E', **jfail** is not referenced.

7: info – int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

```
info = -i
```

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

```
1: itype, 2: jobz, 3: range, 4: uplo, 5: n, 6: ap, 7: bp, 8: vl, 9: vu, 10: il, 11: iu, 12: abstol, 13: m, 14: w, 15: z, 16: ldz, 17: work, 18: rwork, 19: iwork, 20: jfail, 21: info.
```

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

info > 0

f07gr or f08gp returned an error code:

f08tp.4 [NP3663/21]

- \leq **n** if **info** = i, f08gp failed to converge; i eigenvectors failed to converge. Their indices are stored in array **jfail**;
- > **n** if **info** = **n** + i, for $1 \le i \le$ **n**, then the leading minor of order i of B is not positive-definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

7 Accuracy

If B is ill-conditioned with respect to inversion, then the error bounds for the computed eigenvalues and vectors may be large, although when the diagonal elements of B differ widely in magnitude the eigenvalues and eigenvectors may be less sensitive than the condition of B would suggest. See Section 4.10 of Anderson $et\ al.\ 1999$ for details of the error bounds.

8 Further Comments

The total number of floating-point operations is proportional to n^3 .

The real analogue of this function is f08tb.

9 Example

```
itype = int32(1);
jobz = 'Vectors';
range = 'Values in range';
uplo = 'U';
n = int32(4);
ap = [complex(-7.36, +0);
     complex(0.77, -0.43);
     complex(3.49, +0);
     complex(-0.64, -0.92);
     complex(2.19, +4.45);
     complex(0.12, +0);
complex(3.01, -6.97);
     complex(1.9, +3.73);
     complex(2.88, -3.17);
     complex(-2.54, +0)];
bp = [complex(3.23, +0);
     complex(1.51, -1.92);
complex(3.58, +0);
     complex(1.9, +0.84);
     complex(-0.23, +1.11);
     complex(4.09, +0);
complex(0.42, +2.5);
     complex(-1.18, +1.37);
     complex(2.33, -0.14);
     complex(4.29, +0)];
v1 = -3;
vu = 3;
il = int32(10581250);
iu = int32(-1233178000);
abstol = 0;
[apOut, bpOut, m, w, z, jfail, info] = \dots
    f08tp(itype, jobz, range, uplo, n, ap, bp, v1, vu, i1, iu, abstol)
apOut =
  -1.2636
  -2.3214
  -1.8095
  -0.5211 - 0.0656i
  -2.7959
  -0.7025
  -0.0802 + 0.4016i
  -0.1903 + 0.1121i
```

[NP3663/21] f08tp.5

f08tp NAG Toolbox Manual

```
-3.8021
  -0.7133
bpOut =
   1.7972
   0.8402 - 1.0683i
   1.3164
  1.0572 + 0.4674i
  -0.4702 - 0.3131i
   1.5604
  0.2337 + 1.3910i
0.0834 - 0.0368i
0.9360 - 0.9900i
  0.6603
m =
w =
  -2.9936
   0.5047
         0
         0
 -0.8127
                     0.6663
jfail =
           0
           0
           0
           0
info =
           0
```

f08tp.6 (last) [NP3663/21]